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In the single-phase region (including the critical point) of a nearest-neighbor 
Ising ferromagnet with zero external field, the block magnetization and energy 
within the infinite-volume system are, asymptotically for large block size, inde- 
pendent Gaussian variables when the dimension d exceeds four. For other 
models, including ones with long-range interactions, a sufficient condition for 
such triviality of the scaling limit is finiteness of the "bubble quantity." 
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1. I N T R O D U C T I O N  

One of  the major  features of the renormalizat ion group approach  to critical 
phenomena  is that  the scaling limit at an ordinary d-dimensional 
ferromagnetic critical point  should be Gaussian for d>~4. (34~ This 
phenomenon  has been substantially confirmed by the r igorous analyses of 
Aizenman, ~'2~ Fr6hlich, (12~ Aizenman and Graham,  (s) and Gawedzki  and 
Kupiainen (ls'19) (for an extensive review, see ref. 13). Our  purpose here is 
to sharpen some of the previously existing r igorous results for d > 4 in two 
ways. First, we eliminate extraneous (and unverified) hypotheses on the 
decay or  regularity properties of the critical two-point  function; such 
hypotheses were previously needed for d~<6. (1~ Second, we go beyond a 
single-variable block magnet izat ion analysis to obtain bivariate magnetiza- 
t ion-energy results. A bivariate block variable analysis oriented toward 
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critical scaling limits was performed in ref. 10; here we carry the ideas of 
that paper somewhat farther. 

We mainly restrict our attention to the standard Ising model. Exten- 
sions of our results to such systems as lattice ~b 4 and non-nearest-neighbor 
models (including long-range models with d <  4) will be discussed briefly in 
Section 5. For both standard Ising and more general models, the criterion 
which determines the upper critical dimension, as in refs. 1 and 31, is the 
finiteness of the the "bubble quantity" Zx (@0~x) 2 at the critical point. An 
interesting open problem is to prove that the d = 4  scaling limit is 
Gaussian. Our analysis does not resolve this issue even though Gaussian- 
ness of the scaling limit at the critical point can sometimes be proved 
without requiring finiteness of the bubble quantity--e.g., if for some func- 
tion g(r) which is decreasing to zero as r--+ 0% @or d/2)is 
bounded away from zero and infinity as []xll ~ 0o. (See the remark at the 
end of Section 3.) 

2. R E S U L T S  FOR T H E  S T A N D A R D  IS ING M O D E L  

Let {~rx(fl): x ~  2 d} denote the + 1-valued spin random variables of a 
d-dimensional nearest-neighbor spin-l/2 Ising ferromagnet at inverse tem- 
perature fl and zero external field obtained as the infinite-volume limit of 
finite-volume systems with free boundary conditions. For the cubic block, 
A n -- { - n ,  - n  + 1,..., n} d, the block magnetization and energy are 

Mn(fl)= ~ ~x(fl) (2.1) 
x ff A n 

and 

where 

L' ] En(fl)= Y' - ~  ~ J~y~(/~)%(/~) (2.2) 
x~An yE2gd 

j~y = J'l if IIx-yll  = 1 
(2.3) t0 otherwise 

and II IL denotes the Euclidean length in Z d. 
Let tic = tic(d) denote the inverse critical temperature (i.e., the infimum 

of fl such that the spontaneous magnetization at fl is nonzero). For d >  4 
(in fact, for d >  7/2) it is known (3) that there is a unique infinite-volume 
Gibbs distribution both for fl </3c and fl = fie' Denoting expectations by 
( . ) ,  we further define 

K n ( f l )  = ( M n ( f l )  2 )  (2.4) 

L,(fl)  = ( [E , , ( f i ) -  (En(f l))]  2 ) (2.5) 
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We can now state our main result concerning the asymptotic behavior of 
M,(/~n) and En(fln) for a sequence fin. The cases of main interest are when 
fin = tic for all n, or fin converges to tic. 

Theorem 1. Let d > 4  be fixed; let fin be any sequence of inverse 
temperatures in [-0, tic] and define 

Xn = [K~(fl,)]-~/2 Mn(fl~) (2.6) 

z .  = [Ln(/~.)]-1/2 [En(Bn)- (E.(/~.))]  (2.7) 

Then (X,,, Y~) converges in distribution as n --+ oo to a pair of independent 
standard Gaussian random variables; i,e., for any bounded, continuous, 
complex-valued function g on N2, 

f+~ f+~ 1 _(.,2+~2,/2dxcly (2.8) lira (g(X~, Yn)) = g(x, y)~-~e 
n ~ o o  oo  - - o o  

The proof of Theorem I will be given in the next two sections. In Sec- 
tion 3, we show that X, alone converges to a standard Gaussian variable; 
then in Section 4, we show that Yn does likewise and that Y, is asymptoti- 
cally independent of Xn. In Section 5 we discuss the extension of Theorem 1 
to more general models. 

Rornark. The proof of Theorem 1 (and its extensions given in Sec- 
tion 5) can easily be modified to apply to the lattice of block variables 
X(n, x) and Y(n, x) defined for x e 7/a exactly like Xn and Yn except that An 
is replaced by (2n + 1)x + A n. Considering the joint distribution of these 
variables for finitely many x's, one always has tightness (i.e., every sub- 
sequence has convergent subsubsequences), but not, in general, con- 
vergence; for example, a subsequence with fin bounded away from fl~ would 
have its X(n, x)'s asymptotically independent for different blocks, while this 
should not be the case for a subsequence with, say, fin = /~ .  One can show, 
however, that every limit in distribution is jointly Gaussian and (without 
needing subsequences) that the Y(n, x)'s are asymptotically independent of 
each other and of the X(n, x)'s. 

3. BLOCK M A G N E T I Z A T I O N  

The following proposition immediately implies that Xn converges to a 
standard Gaussian random variable. 

Proposition 2. Under the assumptions of Theorem 1, 

lim (exp(tXn)) =exp(t2/2), t~ N (3.1) 
n ~ o o  
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Proof. From the Lee Yang result ~2s) that the zeros in the complex 
plane of (exp(zX~)) are all pure imaginary, it follows that (28) 

exp(t2/2 + U4,n14/4!)~ (exp(tXn)) ~< exp(t2/2), t~ ~ (3.2) 

where U<n (which is necessarily negative) is defined by 

4 2 2 U4,n = E C X . ) -  3 [E(X.)]  

= [Kn(J~n) ] -2 E E (~O'xlCfln) O'x2(Pn) O'x3(#n) O ' x 4 ( [ ~ n ) )  

x I , x2 , x3 , x  4 E A n 

-- (O'Xl(Prt) O ' x 2 ( J ~ r t ) ) ( ( J ' x 3 C # n )  O'x4(/~.) ) 

-- (O"XI(/~pI) O'X3(/~.)) <O'x2C/~rt ) O'+x4C/~rt) ) 

-- <O'Xl(~/l ) O'x4C/~rt) > <O'x2CPrt ) O~x3(J~rt) > "] (3.3) 

To obtain (3.1), it then suffices to prove that U4,, ~ 0 as n + oo. 
Denoting the summand in (3.3) by u4,,(xa, x2, x3, x4), we will use 

Aizenman's inequality, (2) 

--U4, n(Xl, X2, X3, X4) ~<2 ~ G+(xl -- y) Gn(x 2 -- y) 
y ~ Z  d 

X a n ( X  3 - -  y )  G n ( X  4 - -  y )  (3.4) 

where 

Thus 

6.(x) = (%C/L) % +.+(/L)) >o 

[ ]4 
0~<-U4,.<~2EK.C/3n)] -2 ~ 7A G.(x-- y) 

y ~  /Td x n 

We next claim that for any y e Z a, 

GnCx- y)<~2alA.I-I K.Cfl~) 
X ~ A n  

where IA.I = (2n + 1) d is the volume of An; then (3.6) yields 

0 4  --U4, n~22d+l  IAn] -2 

= 2 2 a +  1 iAn] -2 

Iz ]2 
E +,,ix- y) 

y E ~  d x E A n  

E c,,,(x, - y) o.(x~- y) 
x I , X 2 ~ A  n y E Z  d 

(3.5) 

(3.6) 

(3.7) 

(3.8) 
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To .obtain (3.7), we use the fact (26'30) that G,((x~,..., xa)) is a decreasing 
function of each IxJl (with x ~ fixed for i C j )  along with the positivity of G, 
and its invariance under x j --* - x  J: 

x G A  n x E A  n 

x E  {0, l,.. . ,n } d 

~<2dlA~l - '  Z ~ G~(x2-xa) 
x l E A n  x 2 ~ A n  

= 2 a rA.F-' X.(fi .)  (3.9) 

[Another proof of (3.7) will be given in Section 5.] 
Now by the monotonicity of (a~(fl) ax,(fl)) in fl and the assumption 

that fin <~ tic, we have 

0 <~ G,(x) <<. Go(x) =- (ay(fl~) ay+~(flc) ) (3.10) 

so that by (3.8), 

lim sup ( -  U4,~) ~< 2 2a+ ~ lira sup ~ G c ( x -  y) G~(y) 
n ~ c r  ] x p ~  y ~ Z d  

(3.11) 

By the infrared bounds of ref. 14, it is known that for d > 4 ,  the "bubble 
quantity" is finite at the critical point: 

Since we thus have 

G~(x) 2 < ~ (3.12) 
x ~  7~ d 

Go(x) = (2z0 J, J2 | e-~(k'~)Gc(k) dk (3.13) 
,3 

for some G c ~ L Z ( [ - z , ~ ] d d k ) ,  where ( k , x ) = k l x l + . . . + k d x  d, we 
obtain 

G c ( x -  y) Gc(y)= f e-'(~'X~[Gc(k)]2 dk (3.14) 
y E ~  d [ _ ~ , ~ ] d  

The rhs of (3.11) then vanishes by the Riemann-Lebesgue lemma and 
U4,n -~ 0, as desired, completing the proof of Proposition 2. 

Remark. We consider whether the above proof can be revised to 
cover cases, such as d = 4 ,  where the bubble quantity of (3.12) is 
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logarithmically divergent. With /3~ = / ~  for all n, a proof that X, has a 
Gaussian limit based on Aizenman's inequality (3.4) requires (see (3.6)) 
that 

lim [K,( /3~)]- :  H~ = 0 (3.15) 
t T ~ o O  

where ]4 
Hn = ~ Go(x -  y) (3.16) 

y E Z  d x ~ A n  

When d = 4 ,  Hx[I a 2Gc(x ) is bounded away from infinity, ~ and is 
believed to be bounded away from zero (with no "logarithmic" corrections; 
see, e.g., ref. 9) as I[ x [] ~ oe. Such behavior of Gc would imply (after bounding 
sums by integrals and then scaling all variables by n) that Hn>>.cn d+s, 
while K,(~c)<<.c'n d+2, for finite positive c and c' so that [-Kn(/3c)]-2 Hn 
would not tend to zero when d =  4. Nevertheless, it is interesting to note 
that if NxH a/2 Gc(X)~ 0 as Ilx]l--' ~ ,  no matter how slowly, one can prove 
(assuming some extra properties of G~) that [K,(f l~)]-2 H~ does tend to 
zero. For  example, suppose 

const, g(]jxll)/llxlld/z <<. G~(x)<~ const. ' g(Ijx]l)/ljxjl a/2 (3.17) 

for some decreasing function g with g ( r ) ~  0 as r--* ~ .  Then Kn(/~c) is 
bounded above and below by some constant times 

n a r-d/2g(r) r a- 1 dr (3.18) 

while Hn is bounded above by some constant times 

14 na[n dgn(~c)]4 + ~ g ( l l x -  yH) N x -  y]] -aIR (3.19) 
y ~ A2n x n 

However 

[ f: [gn( f l c ) ]  2 nd[n dKn(flc)]4 ~ r n d/2 r d/2- lg(r) dr (3.20) 

which tends to zero as n ~ Go because g(r)---, 0 as r ~ oe. Furthermore, 
because g is decreasing, the second term of (3.19) is bounded by some 
constant times 

[ g ( n ) ]  4 (nar-d/2) 4 r a-~ dr = [ g ( n ) ]  4 n4d(2n)-d/d 
ii 

(3.21) 
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Thus, because g is decreasing to zero, we have 

rg(n)]  4 
lim [K,(fl~)] 2 H, <~ lim c' in_d/2 ~,~ rd/2_ lg(r)] 2 

n ~ o o  n ~ o o  

~< lim c'(2/d)[g(n)]4/[g(n)] 2 = 0 
(3.22) 

4. BLOCK ENERGY 

The following theorem implies that Y~ converges to a standard 
Gaussian variable. 

P r o p o s i t i o n  3. Under the assumptions of Theorem 1, 

lim (exp(sY~))=exp(s2/2), s>~O (4.1) 
n + o : 3  

Proof. By considering subsequences, we may assume, without loss of 
generality, that/~,--+ fie [0, fl~]. We introduce the following notation: 

( A ) , = ( A exp(s Y~) ) / < exp(s Y,) ) (4.2) 

( A ; B ) , = < A B ) , - ( A ) s < B ) s ,  ( A ; B ) = ( A ; B ) o  (4.3) 

By Taylor's formula with remainder, 

s 2 

log(exp(sY~) > = ~- L~(/~,)-2 (E~(/?~); E~(/~) )o~. 

s 2 <E,(/~); E.(fl.))o~ 

2 (E.(f i . ) ;  En([J,~))o 
(4.4) 

where O=O(n,s)~ [0, 1]. To obtain (4.1) from (4.4), it suffices to prove 
that for any sequence sn ~ [0, s], 

lim [An[ -~ <En(]3,,);En(/~n)). = ~ <eo ( f l ) ;~x ( f l ) ) o<~  (4.5) 
r t ~ c ~  x ~ d  

where e~(/~) is the local energy variable, 

! 
~x(/~) = - ~  Y~ JxyG~f/~)ay(/~) 

y ~  ~d 

Now (e~(fl); ey(fl))~,>~O, (15'21~ and 

<E~(/~); E~(/~)>~ = ~ <~(/~); ~(/~)>, 
X, x 2 C An 

(4.6) 

(4.7) 
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so that by the dominated convergence theorem and standard arguments, it 
suffices to have 

lim (e~(/~,,); e~2(/?n))so= (ex~(fi); ex2(fi))o 
r t ~ o o  

(4.8) 

and 

sup (eo(f l ' );ex(f l ' )) , ,< oe 
x e Z d  O<~fl' <~flc,O<~s'~s 

(4.9) 

in order to obtain (4.5) and complete the proof. 
For (4.8), it is enough to have 

lim (a~(fi~)...ax2~ (ax~(fi)...ax2.(fi)) (4.10) 

at least for n = 1 and 2. Now by the GKS inequalities (15'2~) 

<O-~x(L,) ... %~(/~,,) > ~< (o-~,(~,,)... O-x2o(/~,,) >s ~ 

~< ( ~  ~x2~(~) > 

where 

(4.11) 

" f l ,=f l , - s , / [L , (B, )] l /2- - - , f l  as n ~  (4.12) 

since 

1 

x~An  y ~ Z  d 

= d  [A,[ [1 - (ao(fl ,)  ao'( / / , ))  2] 

>~dlA,I [-1-(~o(/~c)~0,(/~))2]-- ,oo as n--+oo (4.13) 

where 0' denotes a nearest neighbor of the origin 0. Hence (4.10) follows 
from the continuity of (ax l ( f l ) ""  ax2,(fi)) as a function of/3 e [0,/?c]- The 
continuity was proved by Lebowitz (23'24) to be a consequence of the 
vanishing of the spontaneous magnetization which is valid by definition 
for ]~<]~c and is also valid at ]~=/~c (at least for d>7/2) .  (3) (Another 
argument for continuity will be given in Section 5.) 

The quantity appearing in (4.9) is basically a specific heat whose finite- 
ness for d > 4  was proved by Sokal. (31) For completeness (and for the 
purpose of Section 5) we provide a proof. 



Magnetization-Energy Scaling Limit 1459 

By the "Lebowitz inequality" for u ~7,22) 4, n~ 

1 

1 

+ (~o(/~') ~,(P')),,  (ay(/r) ~x(Y))s,] 

Then, by the GKS inequalities, one gets (4.9) provided that 

Jo#~f(Oo(/r) ~>,(Y); a~(p') oy,(/~') >,,, 
y ,y ,  ~ ' d  

Jo~oTx~,[ (~o(B ') a~(P')>s, (ay(/~') ~y(/~')>s, 
y , y ' e ~  d 

(4.14) 

~ JoyJ~y,G~(x) G~(y'- y) < oo 
x e Z d  y,y '~7/d 

(4.15) 

This follows from the finiteness of the bubble quantity (3.12), as can be 
seen by various arguments. One argument uses only (3.12) and the fact 
that Jx, =Jy-x with ~ z ~  IJxl < oo; it begins by expressing the quantity in 
(4.15) as a fourfold convolution evaluated at the origin (we leave the 
details to the reader). 

We conclude this section of the paper with a result which yields 
Theorem l. 

Proposi t ion 4. Under the assumptions of Theorem I, 

lim ( e x p ( t X . + s Y ~ ) ) = e x p ( ~ )  for t e N a n d s ~ > 0  (4.16) 

Hence (Xn, Y,) converges in distribution as n -~ oo to a pair of independent 
standard Gaussian random variables. 

Proof. First we show that the last statement of the proposition 
follows from (4.16). Using the bound 

[(exp(zX.+wY~)){~(exp([Rez]X.+[Rew] Y.)), z,w~C (4.17) 

and standard complex variable arguments, we see that (4.16) implies 

lim { e x p ( z X n + w Y , ) ) = e x p ( ~ )  for z e C a n d R e w > 0  (4.18) 
n ~ o o  

Taking w = c~ + iv and z = iu with ~ > 0 and denoting by p,;(dx, dy) the joint 
distribution of (Xn, Yn), we see from (4.18) that 

f~2f(x, y) e ~p pn(dx, dy) --+ f~2f(x, y) e~Y(22r) - I  e -(~2 + y2~/2 dx dy (4.19) 

822/'59/'5-6-24 



1460 De Coninck and Newman 

for any bounded, continuous function f of compact support. But this 
implies the same with f (x ,  y ) e  ~y replaced by any bounded, continuous 
function g(x, y) of compact support, which in turn implies (2.8) as desired, 
since p,(dx, dy) has total mass one. 

Now, to obtain (4.16), it suffices by Proposition 3 to show that 

lim <exp(tX,))~ = exp(t2/2) (4.20) 
n ----~ oo  

Since, by either Gaussian correlation inequalities (29) or the Lee-Yang 
property,(28) 

(exp(tX~) >, ~< exp (-~ <X2~ >,) (4.21) 

it suffices, by Theorem 2 and standard complex variable arguments, to 
prove that for each k = 1, 2 .... 

lira ( ( x ~ k )  -- ( x 2 k ) ~ ) =  0 (4.22) 
n ----~ (x3 

To show this, we write 

< X f f ) -  <X2.k> s= [Kn(fln)]-k -- ~ <Mff>r dr (4.23) 

and use the identity 

d (M~>r 
dr 

= <Mff; - r~>r 

1 
2 [L~(fl~)]-1/2 

• 2 2 E 
Xl,...,X2k~An x~A n y~Z d 

Next we use the following inequalities of ref. 29 (where we 
<Xl... Xm> to denote (a~,(fl~)... ~r~(fi~)>~): 

<Xl . ." x 2 k x y > -  <Xl" " x 2 k > < x y >  

2k 
~ <XiX><Xjy> 2 '  <XilXi2>''" <Xt2k-3Xi2k-2 > ( 4 . 2 4 )  

i,J=l 
i~J 

Jxy<~Xl(#n)' o-x2~(3~ ~x(/~,,) ~y(~n) >r 

write 
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where ~]' is a sum over all pairings of {1 ..... 2 k } \ { i , j }  into pairs {il, i2}, 
{i3, i4},.... Combining these inequalities with the GKS inequalities ~s'21~, we 
have 

d 
o.< 

[K.(B.)] 

( Y, Jxy] sup y'  <ax,(fi~)ay(fl,)> (4.25) X 

\ y e ~ d  / y e ~ d  x, GA n 

where C~ is a combinatorial coefficient depending only on k and where we 
have used that 

y l ,Y2~An  y l ,Y2EAn 

The last summation in (4.25) may be bounded using (3.7) to obtain 

so that 

d 
0 ~ --drr <Mff>~ ~ Ck, a[L.(fl.,)] - i /2 [K . ( f l , , ) ] k+  ~ [A~ I - i  

/ v 2 ~ \  K Ck, ds JAil-1 0 <~ ( X  2k ) - ..... ,~ /s  ~. [L.(fl . )  ] - 1/2 X,,(fl,,) 

By (4.13), L,,(fl,,) >~ const- pA.] ~> const'- JA2~I, while 

(4.26) 

(4.27) 

(4.28 

K , ( f l , ) ~ K n ( f l c ) ~ l A , l  ~ Gc(x) (4.29) 
X ~ A2n 

Thus, to obtain (4.22) and complete the proof, it suffices to show that 

rA2,1-1/2G~(x)--*O as n --. oo (4.30) 
x ~  A2n 

For d > 4 ,  the finiteness of the bubble quantity means that Gc(.)~12(77 a) 
and the left-hand expression of (4.30) is the inner product of Go(.) with a 
vector in/2(7/a) tending weakly to zero as n --, oo; hence (4.30) is valid for 
d > 4 .  

Remark.  The arguments just used to prove Proposition 4 can be 
slightly modified for use in showing asymptotic independence of X, and Y,, 
even when the bubble quantity is infinite. For example, suppose d =  4 and 
/?, ~ tic. Then we may use the infrared bounds of ref. 32, 

Gc(x) <~ const. Ix] 2 - -  d ~--- const - Ix] - 2 (4.31 ) 
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together with (4.28) to obtain 

]A=I-]1/2 (4.32) 
0~< (X~ ~ ) - <X~k)= ~< const .s LL,(/~n)J 

But by arguments like those used in (4.7)-(4.10) and (4.13), 

l iminfL=(fl~)~ > ~ (eo(fi~);a~(~c)) (4.33) 

The right-hand side of (4.33) is a specific heat which, as discussed above, 
is finite for d >  4, (31) but which is predicted to be infinite for d =  4 by renor- 
malization group calculations (see, e.g., ref. 9). For certain ~b 4 models, it can 
presumably be proved infinite by the methods of ref. 19. 

5. R E S U L T S  FOR O T H E R  F E R R O M A G N E T S  

In this section we go beyond the standard Ising ferromagnet by 
eliminating both the restriction to __ 1 Ising variables and the restriction to 
nearest-neighbor interactions. 

Let {~bx(fl):xeZ d} be a family of random variables whose joint 
distribution is the infinite-volume limit with free boundary conditions of 
the finite-volume Gibbs distribution proportional to 

Iexp(~,~Jxy~bxOy)l~p(dq~x) (5.1) 

Here p is an even Borel probability measure on R with p r C~o, the point 
measure at the origin, and such that 

f exp(b(b 2) p(d(~) < oo for all b > 0 (5.2) 

The couplings Jxy satisfy 

J~y=Jy_~>~O with O< ~ J ~ < ~  (5.3) 
X ~ Z  d 

We continue to define Mn(fl), En(fi), Kn(fi), Ln(fl), X,, and Y, as in 
Section 2, but with {ax(fl)} replaced by {~bx(fl)}. 

The class of measures p on ~ to which our results will apply is the 
class ~ basically introduced in refs. 16 and 33 and discussed further in 
refs. 29 and 5 (but see the remark following Lemma 6 below). A measure 
is in 8 if it is the distribution of a finite positive linear combination of spins 
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from some finite +1 Ising system with zero external field and pair 
ferromagnetic interactions or if it is the weak limit of a sequence of such 
distributions. Examples of measures in ~ are the spin-n/2 measures, 
p =  (3n+3n--2+ "'" + 3_n)/(n + 1) for n =  1, 2,..., (16~ and the ~b 4 measures, 
const- exp(-&b 4 + b~ 2) d~ with 2 > 0, b ~ ~.(33) 

The next theorem is our extension of Theorem 1. In a typical applica- 
tion, fl would be the critical parameter ~ and the hypothesis that the bub- 
ble quantity is finite at tic would only be valid if d exceeds the upper critical 
dimension for the given couplings Jr.  Two specific situations in which the 
theorem can be applied in that way are nearest-neighbor ~b 4 models with 
d > 4  ~2~ and models with couplings of the form J x =  (1 + Ixll . . .  + Ixdl) -~, 
where 1 ~<d~<4 and d<r<3d/2. ~4) 

T h e o r o m  5. Let f ie [0, m) be such that 

(~bo(fi) ~b~(fi)) 2 < oo (5.4) 
x ~ Z  d 

and let fin be any sequence in [0, fi]. Then, as n --, 2% (Xn, IT,,) converges 
in distribution to a pair of independent standard Gaussian random 
variables. 

Proof. Since the proof is much the same as for Theorem l, we will 
restrict ourselves to discussing the major points which are different. The 
first difference is that the bound (3.4) on -u4.,, from ref. 2 is replaced by 
the related bound from ref. 5 (see also ref. 13 for some minor corrections to 
ref. 5), which yields [in place of (3.6)] 

O<'-- -U4,n<'-.[Kn(fln)]-212A~ Z Gn(x- y) Gn(x'- y) 
t x , x ' ~ A n  y E Y -  d 

+ (C1A~ + C2) Y~ an(x- y) On(x'- y)~ (5.5) 
x ,  x ' ,  y G A n  ) 

where C1 and C2 are combinatorial constants and 

w E Z d  w e ~  d x E A  n 

This leads to an analogue of (3.11) with 2 zd +~ replaced by 
2Zd+l(flZ,,Jw)2, providing (3.7) is valid. The second difference with 
the proof of Theorem 1 is an alternate derivation of (3.7) which does 
not require any monotonicity of G,(x) in the coordinates of x; this is 
given in Lemma 6 below. The final difference, which comes in the proof of 
Proposition 3, is to replace the proof of continuity in fl of 
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Q(fl)=-<O~(fl)"~)~2,(fl)) for f l s [ o ,  fl] from one relying on the 
arguments of refs. 23 and 24 to one which gives an a priori uniform bound 
on dQ/dfl (or more accurately on AQ/Afl) by using the type of argument 
applied to d<M2k>,/dr in the proof of Proposition 4 above. The resulting 
bound, for 0 ~< fit ~< f12 ~ fl, is 

0 ~< Q(fl2) - Q(fll) 

~< const .max ~ Jy-x(~x,(fl)~x(fl))(~xj(fl)~y(fl)) d~ 
i , j  I x , y ~ Z  d 

(=w )2 ~< const �9 Jw 2 (()o(fl)Ox(fl))2 dfl 
1 x ~ Z d  

~<c~ (~w J~)Ix~ ((bo(fl)(b~(fl))2] (flz-fi~) 

We leave further details of the derivation of this bound to the reader, 
except to note that identities involving expressions such as dQ/dfl should be 
understood as being evaluated before the infinite-volume limit is taken. 

Remark. (~b0(fl) Ox(fl)) is always right-continuous in fl because it is 
nondecreasing and is obtained in the infinite-volume limit as the decreasing 
limit of continuous functions. It follows that the basic hypothesis (5.4) of 
Theorem 5 is implied by the slightly weaker assumption that 

lim }-'1 (4o(fl)~b~(fl))2<oo 

We complete the proof of Theorem 5 by providing the previously 
promised Lemma 6. Its proof was suggested by M. Aizenman. 

k e m m a  6. Suppose G(x) is a function on Z d which is both 
pointwise nonnegative and positive semidefinite, i.e., 

Y, C, CjG(xj-xi)>~O 
i , j=  1 

for any n, any xl,..., x~ ~ ~d, and any C~ ..... Cn ~ C (where C denotes the 
complex conjugate of C). Then for any y ~ Z d, 

G(x-y)<-N2ahAn[ 1 ~ G(x2-xl) (5.7) 
X~An x l , x2~An  
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Proof. Define I.(x) to be the indicator function of A. and I,,(x) as 

S.(x) = IA.I ~ Y', L ( x -  y) 7.(y) 
y ~ d  

f ~  (1-1xJl/(2n+l)) if IxJ[<~2nforeachj 
1 

otherwise 

Then I,,(x) >t (1/2) a for x ~ A. and so 

G ( x - y ) ~ 2  a ~ I,,(x) G ( x - y )  
x ~ A n  x ~  d 

= 2"f e+ir d(&) (5.8) 
[-~,~]~ 

where G(dk) is the finite positive measure on [ - ~ ,  ~z] d such that 

G(x) = (2~)-d/2 f e i(~'~)G(dk) 
[ -  =,,t] a 

(5.9) 

(which exists by the positive semidefiniteness of G) and 

L(k) = (2~z) -d/z ~ I,,(x) e i(k'x) 
"4 E ~ d  

=(27c) -m2 IA.1-1 7.(x)e i(~x) >>.0 (5.10) 
X d 

Since f .  and G are both positive, it follows from (5.8) that 

~, G(x - y) ~ 2d ~ (E . . . .  3 a ].(k) G(dk) 
x ~ A n  

=2 a ~ I.(x) G(x) 
x e ~  d 

=2a  IA.1-1 ~ L( -X l )L (x2 )G(x2-x , )  
X l  �9 x 2  ~ a [d  

which gives (5,7) as desired. 

Rornark. Theorem 5 is valid for other single-site measures p than 
those in the class ~ defined above. It suffices, for example, that p satisfy the 
following two conditions: 

(i) j '+2 exp(z~b) p(drJ) has only pure imaginary zeros. 

(ii) p(dfb) = g(fj2) de) with g log-concave. 
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Condition (i) implies that also the zeros of (exp(zXn)) are all pure 
imaginary (27) [yielding (3.2)] while condition (ii), introduced in ref. 8, 
implies both an inequality on U4,, similar to (5.5) (6,20) and truncated 
Gaussian inequalities such as (4.24). An example of a measure satisfying (i) 
and (ii) is 

p(dO) = const- (1 + ~b 2) exp( __/~4 ,q_ b~b 2) d~b 

with 2 > 0 and b s ~; this p is not in ~ for small 2 and large negative b 
because it does not yield a GHS inequality. ~1~) Theorem 5 can also be 
extended by allowing n dependence in the couplings Jx = J(~) and/or in the 
single-site measure p = p(n). In particular, we note that for convergence of 
Jr, to a standard normal random variable, it suffices [see (3.14), (5.5) and 
(5.7)] that 

W ~  d x ~ z A 2 n  , 

as n --* oo. By the infrared bounds of ref. 14, this will be the case, for exam- 
ple, in a nearest neighbor model with d > 4  provided each fl(n)is in the 
single-phase region for the corresponding p("). 
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